Category Archives: 2 CyberTracker Software

CyberTracker used in Research on Endangered Bottlenose Dolphin of New Zealand

Sarah Dwyer, Gabriela Tezanos-Pinto, Ingrid Visser, Matthew Pawley, Anna Meissner, Jo Berghan and Karen Stockin have just published a paper on “Overlooking a potential hotspot at Great Barrier Island for the nationally endangered bottlenose dolphin of New Zealand” in the journal Endangered Species Research, Vol. 25:97-114, 2014.

bottlenose

ABSTRACT: Conservation initiatives are typically constrained by economic circumstances, a factor certainly true for marine mammal conservation in New Zealand. Most research in this field has been conducted following concerns over anthropogenic impacts on populations and has therefore been funded and/or driven by stakeholder interest. Bottlenose dolphins Tursiops truncatus are classified as ‘Nationally Endangered’ in New Zealand waters. Here, we present the first study on occurrence, site fidelity and abundance of this species off Great Barrier Island (GBI), a previously overlooked region within the home range of the North Island population. Dedicated boat-based photo-identification surveys were conducted monthly from 2011−2013, resulting in 1412 sighting records of 154 individuals. Dolphins were recorded during all months of the year, with a higher probability of encounter in deeper waters during summer and shallower waters during winter and spring. Group sizes (median = 35, mean = 36) were higher than previously reported for this population in other regions. Individual re-sighting patterns were variable; however, overall site fidelity was high (mean monthly sighting rate = 0.33). A Robust Design approach resulted in seasonal fluctuations in abundance and temporary emigration. Based on a super-population estimate, 171 dolphins (CI = 162−180) visited the area during 2011−2013. Our data suggest that GBI is a potential hotspot for bottlenose dolphins of the North Island population rather than a corridor to reach other destinations. We highlight the need for researchers, managers and funding agencies to consider the entire range of a population when conducting or funding research.

Using Cyber Tracking Technology to Outsmart Poachers

ImageJef Dupain

I’m just recently back in Lomie (on border of the Dja Faunal Reserve in Cameroon) from two days of practical training for rangers on the use of the CyberTracker/Trimble for ecological monitoring and anti-poaching.

Instead of counting living monkeys, elephants, and great apes, we witnessed the arrest of about 15 poachers on more than five different occasions. We have been hiding and running, sleeping on the ground next to the fire with guards at both sides of our overnight spot— switching every two hours, assuring security. The Conservator, Achile Mengamenya, who was with us, has a good and dedicated team of park wardens (we were about 20). Nobody complains, while equipment is lacking, and everybody works hard. We were fed water and some rice and tomato sauce in the evening, and in the morning we have one or two beignets for each.

The total amount of confiscated illegal wildlife, from the poachers, is surprising—sitatunga, forest duikers, living and dead pangolin, several species of monkey, freshly killed or smoked. No chimp, gorilla or elephant meat though…as these species are victim of a different type and more specialized category of hunters.

We heard only one group of chimps was heard about 1 km from our campsite, so we can consider that this periphery of this Natural World Heritage site is probably almost hunted out.

However, based on the interrogations of the arrested poachers, and witnesses of some park guards, it is clear that the Dja is still housing good numbers of all species, and remains attractive for a lot of people who prefer to put snares in the park instead of working on their fields in the village. With the Dja managers lacking any support for the last few years, and no control happening anymore, the Dja Biosphere is being hit very hard. And poachers are getting increasingly aggressive. Over the last few weeks, one guard got shot in his arm, another received a blow of a machete above his eye, and last night inhabitants of Lomie attacked the post of the Conservator and his team.

Alain Lushimba (who is here with me, taking the lead in the training on cybertracker) and myself agree on the area’s high resemblance with the Lomako Yokokala Faunal Reserve. While being a beautiful forest with high potentials for biodiversity, the Dja is probably in the same conditions today as the Lomako forest was in 2004 when AWF started working in DRC. Support is needed. “Performance Based Management” and “Evidence-based Conservation” à la Lomako, and the lessons learned, will prove most helpful here. The park authorities and their team are extremely happy with the support we are giving.

Today, we will adapt a work plan in order to respond, first of all, to the absolute priority to get those poachers out of the Reserve, restore law and order, and let the people know that the conservator and his team are operational again.

All paths will be georeferenced, poaching camps destroyed, traces of gorillas, chimps, elephants, bongo and buffaloes recorded, and groups of monkeys—now all frightened—counted. Data will be shared with AWF headquarters the AWF-GIS (mapping) Centre. Evaluation on the ground is planned about 4 to 5months from now.

About the Author

Jef Dupain is AWF’s Director, African Apes Initiative. He holds degrees in biology and zoology from the University of Antwerp, has served as an associate professor for great ape conservation at Kyoto University, and has nearly 20 years of practical experience working on great ape conservation in and out of the field—he has an esteemed reputation as an authority on great ape conservation in Africa.

Using technology in the fight against rhino poaching

Image

Information from Optron

Controlling rhino poaching with the country’s eyes on you is just one of the many tasks that fall under managing the massive area that is the Kruger National Park (KNP). With nearly 2-million hectares of diverse flora and fauna to keep track of, and only about 300 field rangers to do so, monitoring the park is a logistical nightmare. However, the use of innovative technology and customised open-source software is making the ongoing conservation of South Africa’s natural heritage possible. The Kruger National Park is divided into 22 sections, each managed by one section ranger with a number of field rangers to patrol each section every day. Field rangers are imperative for conservation – from the ground, they contribute directly to the management of the park by collecting basic environmental data during their daily patrols. Information such as the distribution of rare and endangered species, availability of surface water and disease outbreaks are integral in the ongoing management of the park. These indicators are used by the SANParks management to provide an early warning system for disease outbreaks, identify trends in illegal exit and entry points, and enable the detection and control of invasive alien species. Therefore, it is extremely important that the data collected is accurate, but when information is recorded manually it is almost impossible to ensure its complete accuracy, which makes collating and using the raw data for decision-making difficult.

When faced with the unique set of challenges that the Kruger National Park presents in terms of ecological conservation, Douw Swanepoel, a Section Ranger of the Kruger National Park, recognised the value of the CyberTracker system in 2000 and soon afterwards 44 GPS devices were purchased for the park. CyberTracker is an open-sourced programme developed by Louis Liebenberg who felt that there was a need for a tracking programme that could work from a palmtop device. The programme is freely available, and the Kruger National Park team has customised the programme specifically for the park’s needs with databases including ranger patrols, vegetation condition assessments, animal behaviour monitoring and invasive species distribution mapping.

The CyberTracker programme used on the Trimble device form a solid partnership, producing a piece of equipment designed specifically to assist with conservation in the park. With an icon-based interface and descriptions in both English and local language, the CyberTracker system is easily accessible to field rangers regardless of literacy. Information is recorded with latitude and longitude coordinates through the integrated GPS system, ensuring that separate GPS skills are not necessary, and as data is captured electronically using graphic check lists, inaccuracy is reduced and minimal training is needed before the rangers can begin recording data. Moving map functionality allows the ranger to pinpoint his exact location on a 1:50 000 or 1:250 000 topographical map or aerial photograph should a ranger urgently need assistance from the SANParks office. With a built-in camera, rangers can document and geotag exactly what they see and send the photo immediately from the field to the office for review, increasing field to office collaboration.

“The device assists the field ranger to accurately call for assistance once a suspicious spoor or even a poached rhino is found,” says Louis Lemmer, from the SAN Parks Honorary Rangers’ National Executive Committee when asked how the device is helping in the fight against rhino poaching. “Previously they had to rely on their general knowledge and geographical features when calling for help, often leading to slow response times due to possible inaccuracies and confusion. The use of GPS technology removes this. Furthermore it is now possible to track and accurately map poacher movements. In this way patterns can be established and plotted on maps. This helps to plan preventative operations.”

The devices are useful as part of a long-term solution because at the end of each day, the data that the field ranger has collected is downloaded on to the section ranger’s computer and then uploaded to SANParks’ GIS/RS Analyst, Sandra Mac Fayden. This allows her to create a full, sophisticated picture of the environmental state of the Kruger National Park with intricate detailing that can only be sourced by professional field rangers with a working knowledge of the area. Once the data has been downloaded it is archived and documented so that it is usable in the long-term.

Thresholds in the programme are set so that the limits of acceptable change in the environment can be monitored. The data in the database is then used in routine analyses run through the programme in order to assess whether there is any danger of ecological factors exceeding those thresholds, thereby warning park management of any unacceptable changes. For example, monitoring data is analysed for each river which flows through the Kruger National Park and should water levels lower and exceed the threshold set by park management, urgent action is required.

With something as volatile and ever-changing as ecology, correct data is essential in its efficient management. In the fight against rhino poaching in the Kruger National Park where intervention and constant vigilance is necessary, rapid decision making is critical and this is only possible when every step of the data collection and analysis is accurate. By using the irreplaceable knowledge and ability of field rangers, curbing human error through easy-to-use software and technology with GPS capabilities, the SANParks team is efficiently managing the vast and diverse ecosystem of the Kruger National Park and engaging in the ongoing fight against rhino poaching.

Read full article here…

The Australian Marine Debris Initiative

Image

The Australian Marine Debris Initiative is a way that everyone can become involved in both the removal of marine debris and finding solutions to stop the flow of rubbish into our oceans.

Tangaroa Blue Foundation is an Australian registered charity focused on the health of our marine environment, and coordinates the Australian Marine Debris Initiative, an on-ground network of volunteers, communities, organisations and agencies around the country monitoring the impacts of marine debris along their stretch of coastline.

Since the program started in 2004, more than 1.2 million pieces of marine debris have been removed from the Australian coastline and data on this debris collated and inputted into the Australian Marine Debris Database.

The database is used to firstly identify what is impacting different sections of the coast, and then to track wherever possible where those items are coming from. Lastly stakeholders are then brought together to work on practical solutions and create source reduction plans to stop marine debris from entering our oceans in the first place. The database has open access to all contributors who are also recognised when data is used, and has been used by the CSIRO, James Cook University, all levels of government and communities.

While an estimated 18,000 pieces of plastic float in every square kilometre of ocean, it is only when it washes ashore that most people get an idea of how much rubbish must actually be out in our oceans and the impacts that this has on marine life and seabirds. This is also our best opportunity to remove it from the environment before the next tide washes it back out to sea again.

Volunteers, organisations and communities from around the country are invited to join forces in the Australian Marine Debris Initiative to find practical solutions in reducing ocean pollution.

The AMDI CyberTracker Sequence was designed using the CyberTracker software and a handheld PDA device to collect data in the field.

The CyberTracker Story

ImageBy Louis Liebenberg

The Origin of Science

CyberTracker has grown from a simple hypothesis: The art of tracking may have been the origin of science. Science may have evolved more than a hundred thousand years ago with the evolution of modern hunter-gatherers. Scientific reasoning may therefore be an innate ability of the human mind. This may have far-reaching implications for indigenous knowledge, citizen science and self-education.

The Persistence Hunt

In 1990 I ran the persistence hunt with !Nate at Lone Tree in the Kalahari. The persistence hunt involves running down an antelope in the mid-day heat on an extremely hot day – chasing the antelope until it drops from heat exhaustion. This may well be one of the oldest forms of hunting, going back two million years ago, long before humans invented bows and arrows. Persistence hunting may have played a critical role in the evolution of the art of tracking and the origin of science.

In 2001 I worked with David Attenborough on the BBC film showing Karoha doing the Persistence Hunt. You can watch Karoha running down a kudu in the video at

Video: The Persistence Hunt

Reviving the Dying Art of Tracking

After running the persistence hunt in 1990 !Nate asked me to help them. They could no longer live as hunter-gathers and needed jobs. Wildlife in the Kalahari has been decimated by fences that cut off migration routes. It was no longer viable to live as hunter-gatherers. And the art of tracking was dying out. After hundreds of thousands of years, traditional tracking skills may soon be lost. Yet tracking can be developed into a new science with far-reaching implications for nature conservation.

We had lengthy discussions around the fire, and it was decided that I should try to find a way to create jobs for trackers. Only by developing tracking into a modern profession, will tracking itself survive into the future. !Nam!kabe agreed that this will be good for the future. But he also had the wisdom to know that it will take a long time. This was for the younger generation, he said, it will not be for him. When he died in 1995 his exceptional tracking expertise was irretrievably lost. He was one of the last of the old generation hunters and one of the best trackers. !Nam!kabe inspired the creation of the Master Tracker certificate – the highest standard of tracking that others could aspire to.

The Tracker Evaluation methodology that I developed provide certification of practical tracking skills, thereby enabling trackers to get jobs in ecotourism, as rangers in anti-poaching units, in wildlife monitoring and scientific research. Tracker evaluations have since 1994 resulted in a steady growth of trackers with increasing levels of tracking skills, thereby reviving tracking as a modern profession.

The Tracker Institute was established as a centre of learning for the highest standards of excellence in the art of tracking and to develop the next generation of Master Trackers. The Tracker Institute is situated in the Thornybush Nature Reserve, providing the opportunity to track lion, leopard, rhino and a wide diversity of species. In addition to providing intensive individual mentoring of practical tracking skills, it will also serve as a research institute.

CyberTracker

If the art of tracking was the origin of science, then modern-day trackers should be able to do science. However, some of the best traditional trackers in Africa cannot read or write. To overcome this problem, the CyberTracker software was developed with an icon-based user interface that enabled expert non-literate trackers to record complex geo-referenced observations on animal behaviour.

In 1996 I teamed up with Justin Steventon, a brilliant young computer science student at the University of Cape Town. The CyberTracker user interface was developed with the help of Karel Benadie, a tracker working in the Karoo National Park in South Africa. Together with fellow ranger and tracker James Minye, they tracked the highly endangered Black Rhino, recording their movements and behaviour in minute detail. Together we published a paper on rhino feeding behaviour in the journal Pachyderm. This is perhaps the first paper based on data gathered independently by two non-literate trackers, confirming a hypothesis about rhino feeding behaviour put forward by the trackers. It was a demonstration that non-literate trackers can do science.

In 2008 the Western Kgalagadi Conservation Corridor Project was initiated, funded by Conservation International for a three-year period. Community members from several villages were employed to use the CyberTracker to conduct track counts. This was the first time that !Nate and Karoha were employed in a major research project, enabling them to use their traditional tracking skills, using the CyberTracker, in a modern context.

You can watch Karoha using the CyberTracker in the video at

Video: Tracking in the Cyber Age

Video: Indigenous trackers are teaching scientists about wildlife

Involving scientists and local communities in key areas of biodiversity, CyberTracker combines indigenous knowledge with state-of-the-art computer and satellite technology.

Towards a New Tracking Science

From its origins with the Kalahari San trackers, CyberTracker projects have been initiated to monitor gorillas in the Congo, butterflies in Switzerland, the Sumatran rhino in Borneo, jaguars in Costa Rica, birds in the Amazon, wild horses in Mongolia, dolphins in California, marine turtles in the Pacific and whales in Antarctica.

CyberTracker is being used by indigenous communities, in national parks, scientific research, citizen science, environmental education, forestry, farming, social surveys, health surveys, crime prevention and disaster relief.

The CyberTracker story is captured in the powerful image of Karoha holding the CyberTracker, with his hunting bag slung over his shoulder. The image symbolises the cultural transition from hunter-gatherer to the modern computer age. Persistence hunting may be the most ancient form of hunting, possibly going back two million years, long before the invention of the bow-and-arrow or the domestication of dogs. After two million years, Karoha may well be the last hunter who has been doing the persistence hunt. Yet of all the hunters at Kagcae, Karoha is the most proficient in using the CyberTracker. In Karoha, one individual not only represents one of the most ancient human traditions, but also the future of tracking with computers.

Karoha’s story represents the most profound cultural leap – a story that gives hope for the future: The ancient art of tracking can be revitalized and developed into a new science to monitor the impact of climate change on biodiversity.

At a more fundamental level, it shows us that anyone, regardless of their level of education, whether or not they can read or write, regardless of their cultural background, can make a contribution to science.