Category Archives: 6 Conservation

Timbavati now home to one of only four Master Trackers in South Africa

ImageNews24 2014-01-30

South Africa – Have you ever thought about the skill it takes (not to mention the guts) to be able to track animals of the wild? We’re talking lions, leopards and pretty much every other animal you can think of.

Lucas Mathonsi from Sgagula, South Africa knows what we’re taking about because he is now one of only four coveted Master Trackers in the world.

Where the story begins:

His story begins as a five-year-old boy who used to accompany his father who was a ranger in the Timbavati reserve. It is here that Lucas Mathonsi was taught about the animals in the reserve and how to track them.

Over the next 47 years, Lucas honed his skills working as a tracker in the Timbavati and Balule reserves, before joining Lion Sands in 2006 as a Senior Tracker. Lucas is renowned for his particular penchant for tracking the elusive Leopard.

The story now:

In 2013, under the tutelage and mentorships of Louis Liebenberg, Juan Pinto and Wilson Masia, Lucas achieved the much coveted Master Tracker qualification, becoming one of four existing Master Trackers in the world, and only the second tracker to be awarded this prestigious qualification in the Lowveld since 1994.

What it takes to be a qualified tracker:

The Cybertracker qualification is an assessment that was created by Louis Liebenberg after realising that the art of tracking is a skill and talent that needs to be recognised and validated. An assessment system has been created and revolves around the identification of tracks as well as following animal tracks and trails in order to find the animal. For detailed info, click here.

With hard work comes great reward:

In celebration of this remarkable life achievement, the Lion Sands Game Reserve will be naming the link road between Lion Sands Sabi Sand and Lion Sands Kruger National Park the “The Mathonsi Link”.

BACKWARD COMPATIBLE

Image

CyberTracker fuses ancient knowledge with cutting-edge technology

By Nancy Bazilchuk

July 2008, Conservation Magazine

In 2003, trained trackers combing the rich jungles in the Republic of Congo’s Lossi Sanctuary for gorillas and chimpanzees stumbled upon a disturbing trend. Duikers, dog-sized antelopes that weave and dive through the jungle’s dense undergrowth, were dying at an astounding rate—local indices dropped 50 percent compared to a 2000 census. Gorillas and chimpanzees were dying at similar rates. Blood tests confirmed the culprit was the deadly virus Ebola. The surprise was that no one had previously known that Ebola killed antelopes.

Yet there was no doubt the terrible data were real. The findings were based on hundreds of observations precisely mapped with CyberTracker software. CyberTracker allows hand-held computers to use stylized images instead of text for data entry. Its heart is a menu of icons that depict whatever elements researchers choose. Trackers need only select a pre-programmed image that matches what they see—a grazing antelope, a carabid beetle—and with one tap, the observation is recorded and paired with geographic coordinates via a Global Positioning System (GPS) link. Trackers hardly have to break stride as they work, which allows enormous numbers of data points to be amassed with little effort. The information can be downloaded to a computer and immediately mapped, thus enabling scientists to make real-time observations about trends, such as the ones from Lossi Sanctuary that showed duiker declines.

The program’s greatest strength, and the feature that sets it apart from its competitors, is its ability to transcend language and culture because of its reliance on images, not words, for data entry.

CyberTracker creator Louis Liebenberg, a South African scientist and author, first came up with the idea in 1996 while tracking with a group of Kalahari Bushmen. Liebenberg realized that he could help save the Bushmen’s rapidly disappearing knowledge if he could find a way to help trackers, who could neither read nor write, record their observations. Thus CyberTracker was born.

CyberTracker’s biggest impact has been in South Africa’s national park system. Kruger National Park official Judith Kruger says that rangers use 110 hand-held computers daily to record sightings on patrol—everything from broken fences to elephant-damaged trees to invertebrates. Liebenberg and two rangers from South Africa’s Karoo National Park used it to document seasonal shifts in black rhino feeding behavior. And CyberTracker is being used to record garbage found littering beaches in Gabon as a way to persuade source nations to help clean up. The program allows for remarkable precision: one 500-m-long section of shoreline in Loango National Park was covered with 535 plastic water bottles and 560 flip-flops among more than 3,000 bits of trash.

The software is free and has been downloaded by more than 6,000 people since it was first made available on the Internet in 2000. About 500 users from 30 countries have registered the software—from the entire Spanish National Park Service to a multinational research group in the Arctic to individual trackers in the U.S. With the help of a 2-million-Euro (approximately US$2 million) grant from the European Commission and Conservation International, Liebenberg is developing the next generation of Cyber-Tracker. Three versions will offer increasingly complex programming features along with conservation-specific analysis tools to allow the calculation of standard measures such as Patrol Effort or Index of Abundance.

Liebenberg says the biggest benefit has been to give an authoritative, scientific “voice” to skilled trackers in Africa who can’t otherwise share their knowledge because they can’t write. Karel Benadie is a ranger and expert rhino tracker who worked with Lieben-berg in Karoo National Park. He told Liebenberg that his inability to write down his rhino observations meant “the PhDs would never listen to him before,” Liebenberg said. With Cyber-Tracker, “Now they do.”

More on the Tracker: www.cybertracker.co.za

Liebenberg, L. et al. 1999. Rhino tracking with the CyberTracker field computer. Pachyderm 27:59-61.

Leroy, E. et al. 2004. Multiple Ebola virus transmission events and rapid decline of Central African wildlife. Science 303:387-390.

About the Author
Nancy Bazilchuk is a freelance writer based in Trondheim, Norway.

The Australian Marine Debris Initiative

Image

The Australian Marine Debris Initiative is a way that everyone can become involved in both the removal of marine debris and finding solutions to stop the flow of rubbish into our oceans.

Tangaroa Blue Foundation is an Australian registered charity focused on the health of our marine environment, and coordinates the Australian Marine Debris Initiative, an on-ground network of volunteers, communities, organisations and agencies around the country monitoring the impacts of marine debris along their stretch of coastline.

Since the program started in 2004, more than 1.2 million pieces of marine debris have been removed from the Australian coastline and data on this debris collated and inputted into the Australian Marine Debris Database.

The database is used to firstly identify what is impacting different sections of the coast, and then to track wherever possible where those items are coming from. Lastly stakeholders are then brought together to work on practical solutions and create source reduction plans to stop marine debris from entering our oceans in the first place. The database has open access to all contributors who are also recognised when data is used, and has been used by the CSIRO, James Cook University, all levels of government and communities.

While an estimated 18,000 pieces of plastic float in every square kilometre of ocean, it is only when it washes ashore that most people get an idea of how much rubbish must actually be out in our oceans and the impacts that this has on marine life and seabirds. This is also our best opportunity to remove it from the environment before the next tide washes it back out to sea again.

Volunteers, organisations and communities from around the country are invited to join forces in the Australian Marine Debris Initiative to find practical solutions in reducing ocean pollution.

The AMDI CyberTracker Sequence was designed using the CyberTracker software and a handheld PDA device to collect data in the field.

Audubon Magazine: Off the Beaten Track

ImageBY VICTORIA SCHLESINGER

Wildlife tracking is making a comeback, attracting outdoor enthusiasts and biologists alike. For some it’s an engrossing hobby; for others it’s a critical contribution to conservation.

Even as tracking has captured the public’s interest, there has been a decline in natural history courses offered at universities. Across the country, schools have eliminated classes in basic taxonomy, ornithology, mammalogy, herpetology–the list goes on–causing a flurry of journal papers expressing concern about the future of organismal science and the next generation. “It is not trendy, it doesn’t bring in the big grants, or those kinds of subjects are considered to be old fashioned,” says Reed Noss, an ecologist at the University of Central Florida and author of essays on the decline. (Today many conservation biology students devote themselves to statistical modeling and DNA analysis.) “So very few people are coming out of graduate school even trained and able to teach those kinds of courses.”

“We lose a basic connection to nature when we don’t immerse ourselves in natural history and only deal with mathematical abstractions and theory,” says Noss, who laments changes in environmental education since the 1970s. “There was already a shift away from classification and toward experiential education where basically you played games with the kid. No one ever wanted to name anything because ‘No, that’ll turn kids off to nature if they make it hard work.’ ” The danger of these two extremes is that by “losing specialists equipped to identify organisms, we’re not able to track the extinction crisis nearly as adequately as in the past.”

Read the full article here…

Betting on Black Swans: The Potential Implications of New Energy Solutions for Climate Change and Biodiversity

ImageLouis Liebenberg

14 January 2014

Revolutionary new energy sources may result in the most disruptive changes in human history. Any one of these potential energy sources may become a Black Swan event. This may have both positive as well as unintended consequences for climate change and biodiversity conservation. While the implications for climate change would be positive, severe disruptions in land-use patterns will require intensive monitoring of biodiversity and proactive conservation management.

Accelerated fossil fuel use could conceivably push the Earth’s climate past a dangerous tipping point resulting in runaway global warming. James Hansen warns that we are on the verge of crossing a tipping point into catastrophic climate change. More and more evidence suggest that we could potentially face runaway climate change at a much faster rate than anticipated. While we need to actively pursue all alternative energy options, including energy conservation, novel energy solutions may be essential. We need to provide the growing energy needs of a growing world economy, both in terms of population growth as well as increasing consumption due to growing wealth required to eliminate poverty of the growing population.

Fusion Energy

Since the German physicist Hans Bethe first explained how nuclear fusion powers the stars in 1939, there have been many attempts to harness fusion on Earth with mixed success.

The largest government-sponsored fusion projects include ITER in France and the NIF in the USA. In 2007 construction work started on ITER in Cadarache, France. And in 2009 the US National Ignition Facility in Livermore, California, opened. NIF uses powerful lasers to compress and heat hydrogen fuel and so initiate fusion for military and astrophysical research. These large research programmes, however, may take decades to become economically viable.

An interesting potential Black Swan is the independent, privately funded project that was initiated in 2002 when Dr. Michel Laberge founded General Fusion to develop economically viable fusion energy. His key insight was realizing that Magnetized Target Fusion, with the aid of modern electronics, materials, and advances in plasma physics, could provide a faster, lower cost, and more practical path to fusion power.

General Fusion’s Magnetized Target Fusion system uses a sphere, filled with molten lead-lithium that is pumped to form a vortex.  On each pulse, magnetically-confined plasma is injected into the vortex. Around the sphere, an array of pistons impact and drive a pressure wave into the centre of the sphere, compressing the plasma to fusion conditions.

Novel Forms of Energy

Perhaps the most surprising Black Swans may come in the form of novel solutions that may be found in nuclear processes that have not yet been harnessed, which could result in an unexpected energy revolution.

As a student in 1984 at the University of Cape Town I studied physics under Prof Jan Rafelski (now at The University of Arizona). At the time one of his fields of research was the physics of table top Muon-catalyzed fusion (Rafelski and Jones, 1987). Since then I had a life-long interest in the possibility of clean fusion energy.

One of the most exciting recent developments in physics is in the field of Low Energy Nuclear Reactions (LENR). At present it is not clear when LENR could replace fossil fuels. But if successful, LENR may result in the most disruptive energy revolution in history. It provides the potential for limitless, cheap, safe, distributed, clean energy that can be used on a small scale to provide energy for a single home or scaled up for industrial uses.

In a video released on January 16, 2014 at Serious Science, MIT Associate Prof. Peter Hagelstein talks about the Problem of Cold Fusion and the Fleischmann and Pons experiment, condensed matter physics, and the laws of conservation of energy in momentum.

In 2009 Scott Pelley of the CBS News TV programme “60 Minutes” did a story on “Cold Fusion Hot Again.” A video was released by Joe Zawodny (2012) of NASA and in 2013 Forbes reported on research conducted by NASA on LENR. An “Overview of Theoretical and Experimental Progress in Low Energy Nuclear Reactions” was presented by Francesco Celani (2012) and Yogendra Srivastava (2012) at a CERN Colloquium in March 2012 in Geneva, Switzerland. Robert Godes (2012) maintains that Brillion Energy Corporation will be able to generate power at a fourth of the cost of coal or natural gas power.

Two physicists, Giuliano Preparata (Univ. Statute di Milano) and Allan Widom (Northeastern University, Boston), have proposed a theoretical model of the physics of LENR (Srivastava, 2012). While various chemical elements may be involved, one version of LENR involves Nickel (one of the most abundant elements on Earth) and Hydrogen, which would provide a limitless supply of cheap energy. The by-products would be the transmutation of Nickel into Copper, with no radioactive waste, greenhouse gases or any other form of dangerous pollution (Srivastava, Widom and Larsen, 2010).

In May 2013 an independent report has been published on the “Indication of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder” (Levi, et. Al. 2013). The authors report that: “Even by the most conservative assumptions as to the errors in the measurements, the result is still one order of magnitude greater than conventional energy sources.” News reports have been featured in Forbes (Gibbs, 2013) and Wired (Hambling, 2013).

The inventor Andrea Rossi aims to bring a commercial product to the market within the next few years. On January 24, 2014, it was announced that Industrial Heat has acquired Rossi’s E-Cat Technology. “The world needs a new, clean and efficient energy source. Such a technology would raise the standard of living in developing countries and reduce the environmental impact of producing energy… Even by the most conservative assumptions as to the errors in the measurements, the result is still one order of magnitude greater than conventional energy sources”

In competition with Rossi, companies like Defklaion Green Technologies, Nichenergy, Brillouin Energy Corporation, Lattice Energy LLC as well as high-profile companies like Mitsubishi and Toyota are also working on commercializing energy generation based on LENR.

An update in Wired magazine, “Cold fusion continues to progress stealthily into the mainstream,” suggests that 2014 is set to be a very interesting year for Low Energy Nuclear Reactions.

Implications for Climate Change and Biodiversity

If any one of these potential energy solutions can successfully be brought to the market, it will be a true Black Swan event that may have profound implications for climate change and the conservation of biodiversity.

Climate Change: It may completely replace fossil fuels, halting the increase in carbon dioxide in the atmosphere. Furthermore, inexpensive clean energy may make it possible to extract carbon dioxide from the atmosphere to bring it back to pre-industrial levels, thereby stabilizing the climate. However, even if we stopped using fossil fuels, we may still experience disruptive climate over the next 100 years.

Water and Food Production: It may become viable to desalinate sea water on a large scale, minimizing the need to extract fresh water from rivers. Vertical farming (Despommier, 2009) may become more efficient than conventional farming. Large areas of farm land may revert back to wilderness. While this may increase the area of land available for biodiversity, it is not clear what the unintended impacts may be of the uncontrolled spread of alien species on abandoned farmland.

Social and Economic Disruptions: Accelerated urbanization and depopulation of rural areas. Inexpensive energy may accelerate the automation of industry resulting in large-scale unemployment. This may require a fundamental restructuring of the economy.

Biodiversity: An irregular climate and the disruptive impacts on land-use patterns may require intensive monitoring of biodiversity to manage the spread of alien species and the influx of indigenous species onto abandoned farm land.

CyberTracker’s Vision: In the future millions of citizen scientists worldwide may use their smartphones to monitor the entire global ecosystem in real time. Large-scale unemployment may provide an opportunity to create “Green jobs” to stimulate the economy and provide the manpower needed for conservation management. Intensive monitoring may reveal new data on the complexities of ecosystems evolving over time in response to disruptions in land-use patterns. Intelligent computers may be used to analyse huge quantities of complex data and predict future trends.

References

Celani, F. 2012. “Overview of Theoretical and Experimental Progress in Low Energy Nuclear Reactions (LENR).” CERN Colloquium Thursday March 22, 2012, Geneva, Switzerland.

Despommier, D. 2009. “The Rise of Vertical Farms.” Scientific American, Vol. 301. No. 5.

Gibs, M. 2013. “Finally! Independent Testing Of Rossi’s E-Cat Cold Fusion Device: Maybe The World Will Change After All.” Forbes.

Godes, R. 2012. Interview with Robert Godes, inventor of the controlled electron capture reaction (CECR) being commercialized by Brillion Energy Corporation of Berkeley.

Hambling, D. 2013. “Cold Fusion gets red hot and aims for EU” Wired.

Hansen, J. 2009. Storms of my Grandchildren. The Truth about the Coming Climate Catastrophe and Our Last Chance to Save humanity. London: Bloomsbury

Levi, G, E. Foschi, T. Hartman, B. Hӧistad, R. Pettersson, L. Tegnér and H. Essén. 2013. Indication of anomalous heat energy production in a reactor device containing hydrogen loaded nickel powder.

Pelley, S. 2009. “Cold Fusion Hot Again.” CBS News TV programme “60 Minutes.”

Rafelski, J. and S. E. Jones. 1987. “Cold Nuclear Fusion.” Scientific American, Vol. 257, No. 7.

Srivastava, Y. N., A. Widom and L. Larsen. 2010. “A primer for electroweak induced low-energy nuclear reactions.”

Srivastava, Y. N. 2012. “Overview of LENT Theory Low Energy Nuclear Transmutations.” CERN Colloquium Thursday March 22, 2012, Geneva, Switzerland.

Zawodny, J. 2012. “Method for Enhancement of Surface Plasmon Polaritons to Initiate & Sustain LENR.”  

The Race between Runaway Climate and Runaway Science

Climate-ChangeMore and more evidence suggest that we could potentially face runaway climate change at a much faster rate than anticipated. The videos Arctic Methane: Why the Sea Ice Matters and Arctic Death Spiral and the Methane Time Bomb presents a sobering analysis of the latest data on disappearing Arctic sea ice. James Hansen warns in a new paper that we are on the verge of crossing a tipping point into catastrophic climate change. Accelerating warming may release methane from permafrost and the ocean floor, creating a positive feedback cycle of increasing warming and increasing release of methane, resulting in potential catastrophic runaway global warming.

While the evidence suggesting potential runaway climate change is cause for concern, I believe the outcome will be determined by a race between climate change and change brought about by science and technology. It is clear that political change and social change will not provide solutions to climate change. Only rapid innovation in science and technology will be able to provide solutions that can deal with the rapidly increasing problems we face. We need runaway science – we need scientific innovation that can outpace the threats posed by runaway climate change.

Over the last 100 000 years science has grown at an accelerating rate. The next ten to twenty years may see innovation in science and technology orders of magnitude greater than what we have witnessed in the last 100 years. Much of this acceleration may come from citizen science, from self-educated independent scientists. The greater the number of people who get involved in science, the greater the chance of a Black Swan solution not anticipated at present. We cannot depend on politicians to increase science budgets to solve the problems we face. Rather, young people need to take the initiative and follow their passion for science.

The CyberTracker Story

ImageBy Louis Liebenberg

The Origin of Science

CyberTracker has grown from a simple hypothesis: The art of tracking may have been the origin of science. Science may have evolved more than a hundred thousand years ago with the evolution of modern hunter-gatherers. Scientific reasoning may therefore be an innate ability of the human mind. This may have far-reaching implications for indigenous knowledge, citizen science and self-education.

The Persistence Hunt

In 1990 I ran the persistence hunt with !Nate at Lone Tree in the Kalahari. The persistence hunt involves running down an antelope in the mid-day heat on an extremely hot day – chasing the antelope until it drops from heat exhaustion. This may well be one of the oldest forms of hunting, going back two million years ago, long before humans invented bows and arrows. Persistence hunting may have played a critical role in the evolution of the art of tracking and the origin of science.

In 2001 I worked with David Attenborough on the BBC film showing Karoha doing the Persistence Hunt. You can watch Karoha running down a kudu in the video at

Video: The Persistence Hunt

Reviving the Dying Art of Tracking

After running the persistence hunt in 1990 !Nate asked me to help them. They could no longer live as hunter-gathers and needed jobs. Wildlife in the Kalahari has been decimated by fences that cut off migration routes. It was no longer viable to live as hunter-gatherers. And the art of tracking was dying out. After hundreds of thousands of years, traditional tracking skills may soon be lost. Yet tracking can be developed into a new science with far-reaching implications for nature conservation.

We had lengthy discussions around the fire, and it was decided that I should try to find a way to create jobs for trackers. Only by developing tracking into a modern profession, will tracking itself survive into the future. !Nam!kabe agreed that this will be good for the future. But he also had the wisdom to know that it will take a long time. This was for the younger generation, he said, it will not be for him. When he died in 1995 his exceptional tracking expertise was irretrievably lost. He was one of the last of the old generation hunters and one of the best trackers. !Nam!kabe inspired the creation of the Master Tracker certificate – the highest standard of tracking that others could aspire to.

The Tracker Evaluation methodology that I developed provide certification of practical tracking skills, thereby enabling trackers to get jobs in ecotourism, as rangers in anti-poaching units, in wildlife monitoring and scientific research. Tracker evaluations have since 1994 resulted in a steady growth of trackers with increasing levels of tracking skills, thereby reviving tracking as a modern profession.

The Tracker Institute was established as a centre of learning for the highest standards of excellence in the art of tracking and to develop the next generation of Master Trackers. The Tracker Institute is situated in the Thornybush Nature Reserve, providing the opportunity to track lion, leopard, rhino and a wide diversity of species. In addition to providing intensive individual mentoring of practical tracking skills, it will also serve as a research institute.

CyberTracker

If the art of tracking was the origin of science, then modern-day trackers should be able to do science. However, some of the best traditional trackers in Africa cannot read or write. To overcome this problem, the CyberTracker software was developed with an icon-based user interface that enabled expert non-literate trackers to record complex geo-referenced observations on animal behaviour.

In 1996 I teamed up with Justin Steventon, a brilliant young computer science student at the University of Cape Town. The CyberTracker user interface was developed with the help of Karel Benadie, a tracker working in the Karoo National Park in South Africa. Together with fellow ranger and tracker James Minye, they tracked the highly endangered Black Rhino, recording their movements and behaviour in minute detail. Together we published a paper on rhino feeding behaviour in the journal Pachyderm. This is perhaps the first paper based on data gathered independently by two non-literate trackers, confirming a hypothesis about rhino feeding behaviour put forward by the trackers. It was a demonstration that non-literate trackers can do science.

In 2008 the Western Kgalagadi Conservation Corridor Project was initiated, funded by Conservation International for a three-year period. Community members from several villages were employed to use the CyberTracker to conduct track counts. This was the first time that !Nate and Karoha were employed in a major research project, enabling them to use their traditional tracking skills, using the CyberTracker, in a modern context.

You can watch Karoha using the CyberTracker in the video at

Video: Tracking in the Cyber Age

Involving scientists and local communities in key areas of biodiversity, CyberTracker combines indigenous knowledge with state-of-the-art computer and satellite technology.

Towards a New Science

From its origins with the Kalahari Bushmen, CyberTracker projects have been initiated to monitor gorillas in the Congo, butterflies in Switzerland, the Sumatran rhino in Borneo, jaguars in Costa Rica, birds in the Amazon, wild horses in Mongolia, dolphins in California, marine turtles in the Pacific and whales in Antarctica.

CyberTracker is being used by indigenous communities, in national parks, scientific research, citizen science, environmental education, forestry, farming, social surveys, health surveys, crime prevention and disaster relief.

The CyberTracker story is captured in the powerful image of Karoha holding the CyberTracker, with his hunting bag slung over his shoulder. The image symbolises the cultural transition from hunter-gatherer to the modern computer age. Persistence hunting may be the most ancient form of hunting, possibly going back two million years, long before the invention of the bow-and-arrow or the domestication of dogs. After two million years, Karoha may well be the last hunter who has been doing the persistence hunt. Yet of all the hunters at Kagcae, Karoha is the most proficient in using the CyberTracker. In Karoha, one individual not only represents one of the most ancient human traditions, but also the future of tracking with computers.

Karoha’s story represents the most profound cultural leap – a story that gives hope for the future: The ancient art of tracking can be revitalized and developed into a new science to monitor the impact of climate change on biodiversity.

At a more fundamental level, it shows us that anyone, regardless of their level of education, whether or not they can read or write, regardless of their cultural background, can make a contribution to science.