Category Archives: The Origin of Science

Tracking Science: The Origin of Scientific Thinking in Our Paleolithic Ancestors

By Louis Liebenberg

Skeptic Magazine, Volume 18, Number 3, 2013

Karoha1

There is a paradox in human evolution: It was once assumed not only that rational science originated with the ancient Greek philosophic schools, but that the belief systems of prehistoric hunter-gatherers were dominated by superstitions and irrational beliefs. If this was the case, then how did the human mind evolve the ability to do scientific reasoning if scientific reasoning was not required for hunter-gather subsistence?

A similar (albeit broader) paradox led the 19th century naturalist Alfred Russel Wallace to conclude that the human brain could not be the product of undirected evolution because “Natural selection could only have endowed savage man with a brain a few degrees superior to that of an ape, whereas he actually possesses one very little inferior to that of a philosopher” (1). The 20th century anthropologist Sherwood Washburn reframed the paradox when he pointed out that the same brain that has been adapted for the needs of hunter-gatherer subsistence today deals with the subtleties of modern mathematics and physics (2). More recently, the psychologist Steven Pinker has noted that Wallace’s paradox of the apparent evolutionary uselessness of human intelligence is a central problem of psychology, biology, and the scientific worldview (3), while the biologist Edward O. Wilson regards it as “the great mystery of human evolution: how to account for calculus and Mozart” (4).

This apparent paradox may be resolved if it is assumed that at least some of the first anatomically modern hunter-gatherers were capable of scientific reasoning, and that the intellectual requirements of modern science were, at least among the most intelligent members of hunter-gatherer bands, a necessity for the survival of hunter-gatherer societies. The first creative science, practiced by possibly some of the earliest members of Homo sapiens who had modern brains and intellects, may have been the tracking of game animals. Tracking is a science that fundamentally requires the same intellectual abilities as a modern science like physics (5). (With “modern hunter-gatherers” and “modern intellects,” the term “modern” is used in the archaeological sense of the word, as when archaeologists and anthropologists refer to “anatomically modern humans” to mean our species. With “modern science” and “modern physics” the term “modern” refers to science and physics practiced during and since the 20th century.)

In the early 1980s I studied physics, mathematics and applied mathematics at the University of Cape Town. While doing a course in history and philosophy of science, I became fascinated by this paradox in human evolution. I had an intuitive gut feeling that the art of tracking may have been the origin of science. I dropped out of university to do my own independent research and in 1990 published my first book, The Art of Tracking: The Origin of Science (6). To do this research I had to become a tracker and spent long periods tracking with the Kalahari Bushmen. Since 1990 I focused on developing tracking into a modern science in order to create jobs for trackers, thereby preventing tracking from dying out.

The Art of Tracking

In easy tracking terrain, trackers may follow a trail simply by looking for one sign after the other, but in difficult terrain this can become so time-consuming that they may never catch up with their quarry. Instead of looking for one sign at a time, the trackers place themselves in the position of their quarry in order to anticipate the route it may have taken. They then decide in advance where they can expect to find signs, instead of wasting time looking for them. To reconstruct an animal’s activities, specific actions and movements must be seen in the context of the animal’s whole environment at specific times and places.

!Nam!kabe Molote of Lone Tree in the central Kalahari, Botswana, was one of the last of the traditional !Xõ Bushman master trackers who grew up hunting with the bow-and-arrow in a nomadic hunter-gatherer band. When he died in 1995, an invaluable store of indigenous knowledge was irretrievably lost. At that stage my own tracking skills were not advanced enough to fully appreciate the depth and subtlety of his tracking expertise. We may never know how good the last generation of traditional master trackers was.

Looking at the tracks of a solitary wildebeest of the previous evening, !Nam!kabe pointed out evidence of trampling, which indicated that the animal had slept at that spot. He explained that the tracks facing away from the sleeping place had been made early that morning and was therefore relatively fresh. The tracks then followed a straight course, indicating that the animal was on its way to a specific destination. After a while, !Nam!kabe started to investigate several sets of footprints in a particular area. He pointed out that these footprints all belonged to the same animal, but were made during previous days. He explained that that particular area was the feeding ground of that specific wildebeest. Since it was, by that time, about midday, it could be expected that the wildebeest may be resting in the shade in the near vicinity. He then followed up the fresh tracks, moving stealthily as the footprints became very fresh, until he spotted the animal in the shade of a tree, not very far from the area that he identified as its feeding ground.

One afternoon I went with !Nam!kabe to hunt a steenbok or a duiker. About two hundred meters from our camp !Nam!kabe shouted “lion!,” and a lioness jumped up in front of us, bounding off into the bush. Shouting to chase away any other lions that may be hidden in the bush, !Nam!kabe and I went to look at her tracks to see what she was doing there. As he studied the tracks, !Nam!kabe explained: “The lioness lay here, jumped up and ran away… this is a large female… she lay here and saw us coming and was afraid of us. We found her here near our camp… she stays here… we must follow her tracks and see if she killed an animal, then we can chase her away and take her meat.” But as we followed her tracks it was clear that she had not killed anything. “This lioness is here with us… don’t think that she ran away… she stalks us here in the thick bush.”

When we returned to our camp, the younger hunters decided to track the lioness. We set out with !Nam!kabe, his son !Nate, Kayate and Boroh//xao, armed with spears and throwing sticks. We could see from her tracks that she circled downwind to look at !Nam!kabe and myself as we were studying her tracks. Kayate said that we must follow her tracks and shout at her to chase her away, because she is too close to our camp.

That night, as we sat around the fire, they told stories of tracking lions and encounters with lions, times when they had to sleep in trees. And once in a while, !Nam!kabe would feel a burning sensation under his armpits and say that the lioness must be near our camp, stalking us from the downwind side. Then they would shout, banging on pots and throw sticks into the dark, downwind from us where they thought the lioness might be. This was repeated a number of times through the night until the dawn finally broke.

The next morning we went out to track the lioness to see what she was up to during the night. We found the place where she lay down until sunset. From there she got up and circled downwind of our camp, coming towards our camp. But as she came near our camp, she stopped. !Nate pointed at her tracks: “She stood here and heard us making a noise – these are the hind feet and here are the front feet… as she stood and listened, she thought to herself: ‘if I go there those people will kill me… if I do not go back I will die here tonight…’ then she turned around and went back to where she came from.”

We then followed her tracks to see where she was going. It was important to see how far she had gone and whether she had left the area or not. We found the place where she had slept for the night. We followed her tracks for most of the day, until we were satisfied that the lioness had moved out of the area and was no longer a threat to us.

The interpretation of the wildebeest and lion tracks was based not on the evidence of the tracks alone, but also on the trackers’ knowledge of animal behavior, on the context of the tracks in the environment, and on the time of the day. Since tracks may be partly obliterated or difficult to see, they may only exhibit partial evidence, so the reconstruction of these animals’ activities must be based on creative hypotheses. To interpret the footprints, trackers must use their imagination to visualize what the animal was doing to create such markings. Such a reconstruction will contain more information than is evident from the tracks, and will therefore be partly factual and partly hypothetical. As new factual information is gathered in the process of tracking, hypotheses may have to be revised or substituted by better ones. A hypothetical reconstruction of the animal’s behaviors may enable trackers to anticipate and predict the animal’s movements. These predictions provide ongoing testing of the hypotheses.

Novel Predictions in Tracking

Perhaps the most significant feature of creative science is that a hypothesis may enable the scientist to predict novel facts that would not otherwise have been known (7).

A simple example of how scientific reasoning may result in the prediction of novel facts in tracking is illustrated by a set of caracal (wildcat) tracks I found at Cape Point near Cape Town. Looking at the tracks I could visualize how the caracal was walking when it turned and pounced towards the left, twisted around and jumped back towards the right. There were no signs or tracks of the animal it was pouncing at. Initially I thought of two explanations. At first I thought it could not have pounced at a bird, because it pounced twice, and if the bird flew away, why would it pounce a second time? So I thought the fact that it pounced twice indicated that a mouse ran from the first pounce landing position to the second pounce landing position. But there were no sign of mouse tracks, so I thought that maybe the wet sand was hard enough that the mouse tracks did not show, or that instead of a mouse it was perhaps a tiny shrew. But neither hypothesis made me feel confident that it was the right explanation, leaving me feeling uneasy—it was a bit of a mystery to me.

The next morning I thought of a novel solution that was the result of two things that made me feel uneasy: first, I could not find any sign of mouse tracks, yet even the smallest mouse should have left faint signs of its sharp claws digging into the sand as it tried to get away from the caracal; second, the second time the caracal jumped (after twisting around), the bounding gait footprints left deep impressions, yet the stride length to the point where it landed was very short.

What I think must have happened is that it tried to pounce on a small bird sitting on the ground. The bird flew up in the direction of the second set of “pounce tracks,” so the caracal twisted around and leapt straight up into the air to catch the bird in mid-air. This would explain why the bounding tracks for the second leap left deep imprints (its feet was pushing down into the ground, not backwards) and why the stride length was so short (it went straight up and down). It would also explain why I could not find any mouse tracks or any other tracks. The tracks of the little bird, where it was sitting, would have been obliterated by the tracks of the caracal when it tried to pounce on it the first time.

I did not initially think of this explanation because at the time I did not know that a caracal could leap up and catch a bird in mid-air. In terms of my own experience at the time, this was a new behavior that I did not know of. As with any set of data that creates a puzzle that does not fit your preconceived expectations, your subconscious needs to work on it to create a new hypothesis; in other words, I had to “sleep on it” before thinking of a solution the next morning, resulting in an “aha moment.” In mathematics and science, the creation of a hypothesis often requires a subconscious period of incubation preceding a sudden illumination (8). Since the caracal is nocturnal, it is unlikely that I would ever observe this activity. However, creating a hypothetical explanation of the tracks enabled me to predict a novel fact about the caracal’s behavior.

The Logic of Science

Empirical knowledge is knowledge based on inductive-deductive reasoning, and “creative science” is knowledge based on hypothetico-deductive reasoning. Let us look at a simple, every-day example that everyone can relate to.

An example of inductive-deductive reasoning would be: Based on past experience, we know that the sun always comes up in the east in the morning. Therefore we can predict that the sun will come up in the east tomorrow morning. We use induction to make a generalization (the sun always comes up in the east), which we then use to deduce a prediction (therefore the sun will come up in the east tomorrow). Inductive-deductive reasoning does not explain why the sun comes up in the east every morning and cannot make novel predictions.

An example of hypothetico-deductive reasoning would be: A philosopher living in ancient Greece may have come up with a hypothesis that the sun appears to come up in the east every morning because the Earth rotates around its axis. The philosopher would then have been able to predict that the sun will always come up in the east every morning. Hypothetico-deductive reasoning explains why the sun comes up in the east every morning. Furthermore, this hypothesis would have enabled the philosopher to make a novel prediction—if you travel to the North Pole the sun will not appear to come up every morning.

We can now look at how the logic of science connects tracking and modern science.

Inductive-Deductive Reasoning

An example of inductive-deductive reasoning in tracking would be the way tracks are identified as that of an animal belonging to a particular species, such as the porcupine. Footprints may vary according to the softness or hardness of the ground, so we need to look for the characteristics which different footprints have in common.

The inductive stage of the argument may be as follows: all porcupines that have been observed produced tracks which had certain characteristics, and no porcupines have been observed to produce tracks that did not have those characteristics. We therefore assume that all porcupines leave tracks which have those specific characteristics. Furthermore, no other animals have been observed to leave tracks which had exactly the same characteristics. We therefore assume that only porcupines leave tracks which have those specific characteristics.

The deductive stage of the argument would then be as follows: we assume that all porcupines and only porcupines leave tracks which have specific characteristics. We conclude, therefore, that any particular track observed to have those specific characteristics would have been made by a porcupine.

In an inductive argument by simple enumeration, the premises and conclusions contain the same descriptive terms (9). It is therefore simply a process of empirical generalization, which does not lead to progress in science because they may only lead to the discovery of facts similar to those already known (7).
Inductive-deductive reasoning is based on direct observations and ordinarily recognizes apparent regularities in nature. Inductive empirical knowledge, therefore, is based on a trial-and-error accumulation of facts and generalizations derived by simple enumeration of instances. It does not explain observations and cannot result in the prediction of novel facts. It can only predict particular observations similar to those that have been observed in the past. Predictions are therefore simply based on experience.

Hypothetico-Deductive Reasoning

In contrast to inductive-deductive reasoning, hypothetico-deductive reasoning involves the explanation of observations in terms of hypothetical causes. The hypotheses may be used as premises in conjunction with initial conditions from which certain implications may be deduced. Some of the implications deduced in such a way may include novel predictions. Hypothetico-deductive reasoning in creative science is an exploratory dialogue between the imaginative and the critical, which alternate and interact. A hypothesis is formed by a process that is not illogical but non-logical, i.e. outside logic. But once a hypothesis has been formed it can be exposed to criticism (10).

A characteristic feature of a theoretical science is that it explains the visible world by a postulated invisible world. In physics, for example, visible matter is explained by hypotheses about an invisible structure that is too small to be seen (11). Similarly, in the art of tracking, visible tracks and signs are explained in terms of invisible activities. A sympathetic understanding of animal behavior enables the tracker to visualize what the animal may have been doing in order to create hypotheses that explain how visible signs were made and how they are connected. Visible signs are therefore connected by invisible processes. These postulated connections are inventions of the tracker’s imagination. Although these hypothetical connections cannot be seen, the conclusions that can be deduced from them enable the tracker to anticipate and predict visible signs.

A theoretical science such as physics is analogous to tracking in the sense that observable properties of the visible world may be regarded as signs of invisible structures or processes. The force of gravity (in Newton’s theory), or the gravitational field (in Einstein’s theory), or more recently the Higgs Boson, cannot actually be seen. Its postulated existence is only indicated by observable effects on bodies similar to those that such a force (or field) would have on bodies. Nuclear particles cannot be seen. Physicists can only see signs, such as “particle tracks,” that correspond to those that would be made by hypothetical particles.

Systematic and Speculative Tracking

We may now make the link between tracking and the origin of scientific reasoning through two fundamentally different types of tracking—systematic tracking and speculative tracking.

Systematic tracking involves the systematic gathering of information from signs, until it provides a detailed indication of what the animal was doing and where it was going. In order to reconstruct the animal’s activities, the emphasis is primarily on gathering empirical evidence in the form of tracks and other signs. Systematic tracking involves inductive-deductive reasoning.

Speculative tracking involves the creation of a working hypothesis on the basis of initial interpretation of signs, knowledge of the animal’s behavior and knowledge of the terrain. With a hypothetical reconstruction of the animal’s activities in mind, trackers then look for signs where they expect to find them. The emphasis is primarily on speculation, looking for signs only to confirm or refute their expectations. When their expectations are confirmed, their hypothetical reconstructions are reinforced. When their expectations prove to be incorrect, they must revise their working hypotheses and investigate other alternatives. Speculative tracking involves hypothetico-deductive reasoning.

In systematic tracking, trackers do not go beyond the evidence of signs and they do not conjecture possibilities that they have not experienced before. Systematic tracking essentially involves empirical knowledge based on inductive-deductive reasoning. In speculative tracking the trackers go beyond the evidence of signs. Anticipation and prediction are based on imaginative preconceptions. They conjecture possibilities which are either confirmed or refuted. Speculative tracking involves a continuous process of conjecture and refutation and is a creative science based on hypothetico-deductive reasoning.

Systematic tracking involves a cautious approach. Since the trackers do not go beyond direct evidence, the chances of losing the trail are small. Even anticipation and prediction do not involve great risk of losing the trail, since they are based on repeated experience. Provided the trackers can progress fast enough, they will eventually overtake their quarry. While systematic tracking may be very efficient in relatively easy terrain, it may prove to be very time-consuming in difficult terrain.

Speculative tracking, on the other hand, requires a bold approach. Anticipating the animal’s movements, by looking at the terrain ahead and identifying themselves with the animal on the basis of their knowledge of the animal’s behavior, trackers may follow an imaginary route, saving much time by only looking for signs where they expect to find them. Trackers may visualize animals moving through the landscape and ask themselves what they would do if they were the animals, and where they would have gone. The tracker creates an internal simulation of different possibilities, thereby simulating and predicting the future. By predicting where animals may have been going, the trackers can leave the trail, take a short cut, and look for the tracks further ahead.

In principle, there is a fundamental difference between systematic and speculative tracking. In practice, however, they are complementary, and a tracker may apply both types of tracking. In very easy terrain, such as open, sparsely vegetated, sandy terrain, systematic tracking may be so quick that it may not be worth risk losing the trail by speculation. In very difficult terrain, such as very hard, rocky terrain, a tracker may not get very far with systematic tracking, so that speculative tracking may be the only way to overtake the quarry. Trackers may also alternate between systematic and speculative tracking as the terrain and vegetation changes during the course of tracking an animal.

The Evolution of Tracking and the Origin of Science

Finally, we can now look at when systematic and speculative tracking evolved, and therefore the evolutionary origins of creative science.

A wide array of evidence suggests that hominids were actively hunting, at least by the time that Homo erectus appears about two million years ago (12, 13, 14, 15). The evidence for hunting includes a large proportion of bones with cut-marks indicative of flesh removal from regions of shafts that would not have had flesh had they been scavenged. Evidence for endurance running as early as two million years ago may indicate the evolution of persistence hunting (16, 17, 18, 19). Persistence hunting takes place during the hottest time of the day and involves chasing an animal until it overheats and eventually drops from hyperthermia (17). The earliest evidence of hunting that would have involved systematic tracking therefore goes back about two million years to Homo erectus (5).

The earliest direct evidence of speculative tracking is found about 70 000 years ago. Animals are always alert for predators tracking them, looking back down their own trail. It is therefore not possible to stalk an animal using systematic tracking. Hunting with missile weapons would therefore have required a very advanced level of speculative tracking (5). The bow and arrow and the spear thrower were not invented until quite recently, probably after the origin of modern Homo sapiens (20). The earliest evidence of bow and arrow was found in South Africa and dates to 71 000 years ago (21). Evidence of symbolic activities, including both red ochre and seashells that were clearly collected for their aesthetic appeal, date back to 110 000 years ago in South Africa (22). This may provide indirect evidence of the creative cognitive abilities required for speculative tracking more than 100 000 years ago with the evolution of Homo sapiens (5).

In contrast to systematic tracking, speculative tracking required a fundamentally new way of thinking. The evolution of speculative tracking may have resulted in the cognitive abilities required for creative scientific thinking.

Download pdf of article here

The Origin of Science by Louis Liebenberg is available as a Free eBook at:
http://www.cybertracker.org/science/books

References

1. Wallace, A. R. 1870. “The Limits of Natural Selection as Applied to Man.” In Contributions to the Theory of Natural Selection. A Series of Essays. London and New York: Macmillan.
2. Washburn, S. L. 1978. “The Evolution of Man.” Scientific American, September, vol. 239 no. 3.
3. Pinker, S. 1997. How the Mind Works. London: Penguin Books.
4. Wilson, E. O. 1998. Consilience. The Unity of Knowledge. London: Abacus.
5. Liebenberg, L. 2013. The Origin of Science. Cape Town: CyberTracker.
6. Liebenberg, L. 1990. The Art of Tracking: The Origin of Science. Cape Town: David Philip.
7. Lakatos, I. 1978. The Methodology of Scientific Research Programmes. Philosophical Papers Vol. 1. Edited by J. Worral and G. Currie. Cambridge: Cambridge University Press.
8. Hadamard, J. 1945. The Psychology of Invention in the Mathematical Field. New York: Dover Publications, Inc.
9. Losee, J. 1972. A Historical Introduction to the Philosophy of Science. Oxford: Oxford University Press.
10. Medawar, P. B. 1969. Induction and Intuition in Scientific Thought. Philadelphia: American Philosophical Society.
11. Popper, K. R. 1963. Conjectures and Refutations. London: Routledge and Kegan Paul.
12. Potts, R. 1988. “Environmental Hypotheses of Human Evolution.” Yearbook of Physical Anthropology 41, 93–136.
13. Bunn, H.T. 2001. “Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo.” In: Stanford, C.B., Bunn, H.T. (Eds.), Meat-Eating and Human Evolution, Oxford University Press, Oxford, pp. 199-218.
14. Dominguez-Rodrigo, M. 2002. “Hunting and Scavenging by Early Humans: The State of the Debate.” Journal of World Prehistory 16, 1-54.
15. Braun, D.R., J.W.K. Harris, L.C. Bishop, B.G. Richmond, and M. Kibunjia. 2010. “Early hominin diet included diverse terrestrial and aquatic animals 1.95 Myr ago in East Turkana, Kenya,” Proceedings of the National Academy of Sciences (U.S.A.)107(22): 10002-10007.
16. Bramble, D. M., and D. E. Lieberman. 2004. “Endurance running and the evolution of Homo.” Nature 432:345–52.
17. Liebenberg, L. 2006. “Persistence hunting by modern hunter-gatherers”. Current Anthropology. 47, 1017–1025.
18. Liebenberg, L. 2008. “The relevance of persistence hunting to human evolution”. Journal of Human Evolution. 55, 1156-1159.
19. Lieberman, D.E., D.M. Bramble, D.A. Raichlen and J.J. Shea. 2009. “Brains, Brawn, and the Evolution of Human Endurance Running Capabilities.” In F.E. Grine, J.G. Fleagle and R.E. Leakey. (eds.) The First Humans: Origin and Early Evolution of the Genus Homo, Vertebrate Paleobiology and Paleoanthropology, © Springer Science + Business Media B.V. 2009
20. Shea, J.J., 2006. “The origins of lithic projectile point technology: evidence from Africa, the Levant, and Europe.” Journal of Archaeological Science 33, 823–846.
21. Brown, K.S., C.W. Marean, Z. Jacobs, B.J. Schoville, S. Oestmo, E.C. Fisher, J. Bernatchez, P. Karkanas and T. Matthews. 2012. “An early and enduring advanced technology originating 71,000 years ago in South Africa.” Nature. 491, 590-593 doi:10.1038/nature11660.
22. Marean, C.W. 2010. “When the Sea Saved Humanity”. Scientific American, Volume 303, Number 2.

A Brief History of Hunting: from Wild Animals to Subatomic Particles

ImageAkhnaton’s Journal

Hunting Subatomic Particles

One of the earliest devices (but not the first) that physicists used to detect, track and measure subatomic particles is something called a cloud chamber. The cloud chamber was invented in 1911 by the Scottish physicist Charles Wilson. A cloud chamber is actually a rather simple device. A glass container is saturated with water or alcohol vapor and a temperature gradient is created by placing dry ice on the bottom and a hot water pack on top. This gradient produces an atmosphere that allow clouds to form. When a radioactive substance is introduced in the chamber, it releases subatomic particles like electrons and beta particles (a helium nucleus).  These particles acts as the “condensation” nuclei, and as they stream out of the radioactive source, they produce visible streams of ‘clouds’. We can not actually see the subatomic particles; what we see is water vapor (or alcohol vapor) nucleated by the particles. Different particles behave differently in different situations, like in a magnetic field across the chamber. Electrons and beta particles have opposite charges, for example, so they will bend in opposite directions in a magnetic field. Beta particles are more massive than electrons, so they will not bend as sharply.

“Seeing” electrons and beta particles is relatively easy.  Any radioactive substance will do. You can actually purchase Tritium (radioactive helium isotope) or other radioactive sources and build your own cloud chamber with household items. In the past 100 years, more sophisticated devices have been invented to track subatomic particles, but the basic tracking principles are the same.

To find particles like the Higgs boson, we also need to know where and how to look for them.  Physicists come up with complicated mathematics models to figure out the conditions and variables needed to produce the particles, and then try to produce them by creating the conditions and manipulating the necessary variables.  There is a rather simple 3-step formula that physicists follow either knowingly or by habit. First (step 1) you study the tracks and behavior of particles in ideal conditions or situations that are easy to discern.  You build on what we already know, essentially.  That’s why physicists spend so much time and effort in school before actually working in a laboratory. In step 2, you manipulate the conditions and collect data in different situations following the same kind of thought processes.  Then once you have enough data, you use that data to construct a working hypothesis of where and how to find the next particle.  From this hypothetical reconstruction you look for the most likely place to find tracks or other evidence of new particles (step 3).  The Higgs boson, for example, has made it to step 2 of this formula (enough data has been collected to develop a working hypothesis that it exists), and recently, after overcoming some complications, made it to step 3 (actually finding evidence of it’s existance).  If the Higgs boson did not exist we would have had to come up with a new hypothesis.

This thought process is sometimes called the scientific method or deductive reasoning (or call it the hypothetico-deductive method if you really want to impress people), and it’s greatest power is that it allows us to know about things and processes we cannot see.   This is a quite powerful and effective tool, and it has had a profound effect on how humans function in the world. We are often taught that the scientific method was first fully developed by Europeans sometime between the Renaissance and the industrial revolution, or the era loosely known as the age of Enlightenment. It is, in fact, often claimed to be directly responsible for the European ‘Enlightenment’. Other sources credit ancient Greek philosophers with first articulating the reasoning process, or at least the legitimate system of reasoning.  In 350 B.C., Aristotle wrote a book titled Organon in which he articulates the art of reasoning.  Unfortunately, this system did not help Aristotle in figuring out that the earth revolves around the Sun, however.

Tracking Wildlife

Sometime in the 1980s, a man from South Africa by the name of Louis Liebenberg started his academic career by studying physics and mathematics at the University of Cape Town and was initially interested in particle physics.  After taking a course in the philosophy of science, however, he became interested in an idea that the origins of science began not with the age of Enlightenment or with the Greeks but rather with our hunting and gathering ancestors, and that tracking sub-atomic particles is not much different, conceptually at least, than hunting wild game.

Having grown up in South Africa during apartheid, Liebenberg had never worked with a black African until studying hunting techniques with the Kalahari San or !Kung people in Botswana and Namibia (often popularly known as Bushmen).  Liebenberg wrote a book in 1990 titled the Art of Tracking: the Origins of Science where he states that the tracking ability of foragers and hunters “is science that requires fundamentally the same intellectual abilities as modern physics and mathematics.”  When tracking down animals, for example, you can’t just follow the tracks because they disappear eventually.  The hunter-gatherers gather data about the feeding habits, breeding behavior, and migrating patterns of animals, for example (step 1 of the 3-step process mentioned above).  They then use the that information to create hypotheses and models about where to find more animals (step 2).  The hunters then follows the models to track down and ‘confirm’ their models (step 3). This knowledge underpins “a process of creative problem-solving in which hypotheses are continuously tested against spoor evidence, rejecting those which do not stand up and replacing them with better hypotheses.”  In essence, this ability is what makes us human, and for more than 200,000 years, we have used this ability for hunting animals and gathering plants, and only recently have we co-opted this strategy for finding other things like subatomic particles, criminals, and lower prices on houses, stocks and bonds, and household items.

The two major differences between hunters of Kalahari and the particle trackers at CERN are the things they are looking for and the instruments used to record data of the things’ whereabouts.  Concerning the first difference, you might say that the CERN physicists have a more inefficient and indirect way of obtaining their food. They use their hunting skills to find particles they can not eat but they keep detailed records and write down their predictions and discoveries which they use to impress other people who provide them the means to obtain their food. Concerning the second difference, the San depend primarily on their memories to record data, whereas CERN physicists are somewhat deficient in their memory skills so they have come to depend on other recording devices.  To be fair, the physicists have a very massive load of data to work with. They have so much data and information they share with physicists from all over the world that one of their former engineers, Tim Berners-Lee, developed in 1989 a protocol for hypertext documentation known as the ‘World Wide Web’ to make things a little easier (it initially didn’t help much with that effort, but other people outside of CERN found the protocol useful).

In 1997, Liebenberg got together with Justin Steventon, a software developer at Microsoft to found a company called CyberTracker.  CyberTracker makes software for portable electronic devices that could be used to track and record wildlife. The idea was inspired by Liebenberg’s interactions among the Kalahari San.  CyberTracker software is not only used to track wild game, but is also being used in wildlife preservation efforts, search and rescue missions, and even in finding criminals.

Further Reading
Leon Lederman. 1996. The God Particle: If the Universe is the Answer, What is the Question? New York: Houghton Mifflin.
Louis W. Liebenberg. 1990. The Art of Tracking: The Origins of Science. Cape Town, South Africa: David Phillip.

Online Resources for Creating a Cloud Chamber
Building a Cloud Chamber for detecting Cosmic Rays, from the American Museum of Natural History.

On Endurance Running, the Development of Scientific Thinking and Creating Greater Environmental Awareness

On-Endurance-Runningby Markus Kittner

Probably over 2 million years old and likely the most ancient form of hunting (before the domestication of dogs and the invention of weapons), persistence hunting is/was done without weapons. This was mainly possible because of the unique human physical ability to outrun an animal to exhaustion. Strange as it sounds humans are the best adapted creatures on earth to run long distances in hot conditions. Because unlike most animals our upright bodies aren’t so close to the hot ground, we sweat to cool down, don’t need to drink as frequently as other animals and our breathing is independent from our stride.

But besides endurance running, another important factor contributing to our persistence hunting success was our unique ability for scientific thinking. Humans had to be able to deduce, predict and theorize where the prey might be or run to (more on this in the videos to follow).

Back in the early 1980′s, 22 year old Louis Liebenberg was majoring in Maths and Physics at Cape Town University. There he had begun challenging the traditional view that the human brain could not be the product of natural selection because of it’s appreciation for art and science (which meant that it far exceeded the capacity of all other animals). However Louis had a hunch that scientific thinking was indeed evolutionary and had developed as a necessity for the survival of modern hunter-gatherer societies, especially from the practice of animal tracking in hunting. So on deciding he would rather research his evolutionary intuition than finish his studies, to prove his evolution theory Louis dropped out of college.

Read the full article here…

The Race between Runaway Climate and Runaway Science

Climate-ChangeMore and more evidence suggest that we could potentially face runaway climate change at a much faster rate than anticipated. The videos Arctic Methane: Why the Sea Ice Matters and Arctic Death Spiral and the Methane Time Bomb presents a sobering analysis of the latest data on disappearing Arctic sea ice. James Hansen warns in a new paper that we are on the verge of crossing a tipping point into catastrophic climate change. Accelerating warming may release methane from permafrost and the ocean floor, creating a positive feedback cycle of increasing warming and increasing release of methane, resulting in potential catastrophic runaway global warming.

While the evidence suggesting potential runaway climate change is cause for concern, I believe the outcome will be determined by a race between climate change and change brought about by science and technology. It is clear that political change and social change will not provide solutions to climate change. Only rapid innovation in science and technology will be able to provide solutions that can deal with the rapidly increasing problems we face. We need runaway science – we need scientific innovation that can outpace the threats posed by runaway climate change.

Over the last 100 000 years science has grown at an accelerating rate. The next ten to twenty years may see innovation in science and technology orders of magnitude greater than what we have witnessed in the last 100 years. Much of this acceleration may come from citizen science, from self-educated independent scientists. The greater the number of people who get involved in science, the greater the chance of a Black Swan solution not anticipated at present. We cannot depend on politicians to increase science budgets to solve the problems we face. Rather, young people need to take the initiative and follow their passion for science.

Our Blog Title “Science on the Run”

We would like to thank Dr. David Ludden for permission to use the title “Science on the Run” from his review in PsycCRITIQUES.

In our CyberTracker Blog we would like to create an overall narrative of all the stories that pull together the different projects that we have been working on. “Science on the Run” is a very compelling metaphor for not only persistence hunting, but also the art of tracking, the evolution of science, even using the CyberTracker software on smartphones to do “science on the run,” for self-education (learning as you go) and citizen science (learning about science through participation).

We hope you will enjoy our new CyberTracker Blog!

Louis Liebenberg

The CyberTracker Story

ImageBy Louis Liebenberg

The Origin of Science

CyberTracker has grown from a simple hypothesis: The art of tracking may have been the origin of science. Science may have evolved more than a hundred thousand years ago with the evolution of modern hunter-gatherers. Scientific reasoning may therefore be an innate ability of the human mind. This may have far-reaching implications for indigenous knowledge, citizen science and self-education.

The Persistence Hunt

In 1990 I ran the persistence hunt with !Nate at Lone Tree in the Kalahari. The persistence hunt involves running down an antelope in the mid-day heat on an extremely hot day – chasing the antelope until it drops from heat exhaustion. This may well be one of the oldest forms of hunting, going back two million years ago, long before humans invented bows and arrows. Persistence hunting may have played a critical role in the evolution of the art of tracking and the origin of science.

In 2001 I worked with David Attenborough on the BBC film showing Karoha doing the Persistence Hunt. You can watch Karoha running down a kudu in the video at

Video: The Persistence Hunt

Reviving the Dying Art of Tracking

After running the persistence hunt in 1990 !Nate asked me to help them. They could no longer live as hunter-gathers and needed jobs. Wildlife in the Kalahari has been decimated by fences that cut off migration routes. It was no longer viable to live as hunter-gatherers. And the art of tracking was dying out. After hundreds of thousands of years, traditional tracking skills may soon be lost. Yet tracking can be developed into a new science with far-reaching implications for nature conservation.

We had lengthy discussions around the fire, and it was decided that I should try to find a way to create jobs for trackers. Only by developing tracking into a modern profession, will tracking itself survive into the future. !Nam!kabe agreed that this will be good for the future. But he also had the wisdom to know that it will take a long time. This was for the younger generation, he said, it will not be for him. When he died in 1995 his exceptional tracking expertise was irretrievably lost. He was one of the last of the old generation hunters and one of the best trackers. !Nam!kabe inspired the creation of the Master Tracker certificate – the highest standard of tracking that others could aspire to.

The Tracker Evaluation methodology that I developed provide certification of practical tracking skills, thereby enabling trackers to get jobs in ecotourism, as rangers in anti-poaching units, in wildlife monitoring and scientific research. Tracker evaluations have since 1994 resulted in a steady growth of trackers with increasing levels of tracking skills, thereby reviving tracking as a modern profession.

The Tracker Institute was established as a centre of learning for the highest standards of excellence in the art of tracking and to develop the next generation of Master Trackers. The Tracker Institute is situated in the Thornybush Nature Reserve, providing the opportunity to track lion, leopard, rhino and a wide diversity of species. In addition to providing intensive individual mentoring of practical tracking skills, it will also serve as a research institute.

CyberTracker

If the art of tracking was the origin of science, then modern-day trackers should be able to do science. However, some of the best traditional trackers in Africa cannot read or write. To overcome this problem, the CyberTracker software was developed with an icon-based user interface that enabled expert non-literate trackers to record complex geo-referenced observations on animal behaviour.

In 1996 I teamed up with Justin Steventon, a brilliant young computer science student at the University of Cape Town. The CyberTracker user interface was developed with the help of Karel Benadie, a tracker working in the Karoo National Park in South Africa. Together with fellow ranger and tracker James Minye, they tracked the highly endangered Black Rhino, recording their movements and behaviour in minute detail. Together we published a paper on rhino feeding behaviour in the journal Pachyderm. This is perhaps the first paper based on data gathered independently by two non-literate trackers, confirming a hypothesis about rhino feeding behaviour put forward by the trackers. It was a demonstration that non-literate trackers can do science.

In 2008 the Western Kgalagadi Conservation Corridor Project was initiated, funded by Conservation International for a three-year period. Community members from several villages were employed to use the CyberTracker to conduct track counts. This was the first time that !Nate and Karoha were employed in a major research project, enabling them to use their traditional tracking skills, using the CyberTracker, in a modern context.

You can watch Karoha using the CyberTracker in the video at

Video: Tracking in the Cyber Age

Involving scientists and local communities in key areas of biodiversity, CyberTracker combines indigenous knowledge with state-of-the-art computer and satellite technology.

Towards a New Science

From its origins with the Kalahari Bushmen, CyberTracker projects have been initiated to monitor gorillas in the Congo, butterflies in Switzerland, the Sumatran rhino in Borneo, jaguars in Costa Rica, birds in the Amazon, wild horses in Mongolia, dolphins in California, marine turtles in the Pacific and whales in Antarctica.

CyberTracker is being used by indigenous communities, in national parks, scientific research, citizen science, environmental education, forestry, farming, social surveys, health surveys, crime prevention and disaster relief.

The CyberTracker story is captured in the powerful image of Karoha holding the CyberTracker, with his hunting bag slung over his shoulder. The image symbolises the cultural transition from hunter-gatherer to the modern computer age. Persistence hunting may be the most ancient form of hunting, possibly going back two million years, long before the invention of the bow-and-arrow or the domestication of dogs. After two million years, Karoha may well be the last hunter who has been doing the persistence hunt. Yet of all the hunters at Kagcae, Karoha is the most proficient in using the CyberTracker. In Karoha, one individual not only represents one of the most ancient human traditions, but also the future of tracking with computers.

Karoha’s story represents the most profound cultural leap – a story that gives hope for the future: The ancient art of tracking can be revitalized and developed into a new science to monitor the impact of climate change on biodiversity.

At a more fundamental level, it shows us that anyone, regardless of their level of education, whether or not they can read or write, regardless of their cultural background, can make a contribution to science.

A New Vision of Science

Image

In The Origin of Science I address one of the great mysteries of human evolution: How did the human mind evolve the ability to develop science?

The art of tracking may well be the origin of science. Science may have evolved more than a hundred thousand years ago with the evolution of modern hunter-gatherers. Scientific reasoning may therefore be an innate ability of the human mind. This may have far-reaching implications for self-education and citizen science.

The implication of this theory is that anyone, regardless of their level of education, whether or not they can read or write, regardless of their cultural background, can make a contribution to science. Kalahari Bushmen trackers have been employed in modern scientific research using GPS-enabled handheld computers and have co-authored scientific papers. Citizen scientists have made fundamental contributions to science. From a simple observation of a bird captured on a smart phone through to a potential Einstein, some may be better than others, but everyone can participate in science.

Today humanity is becoming increasingly dependent on science and technology for survival, from our dependence on information technology through to solving problems related to energy production, food production, health, climate change and biodiversity conservation. Involving citizens in science may be crucial for the survival of humanity over the next hundred years.

Scientific reasoning was part of hunter-gatherer culture, along with music, storytelling and other aspects of their culture. Science and art should be an integral part of human culture, as it has been for more than a hundred thousand years.

Louis Liebenberg

Download Free eBook The Origin of Science